DC Kirchhoff's Voltage Law (1:36:58)

Describe in your own words Kirchhoff's Voltage Law

Describe how polarity influences whether a voltage change is consider a rise or drop.

Write the KVL equation for the above circuit.

Given the above circuit and E = 7V, $R_1 = 130\Omega$ and $R_2 = 220\Omega$, solve for R_T , I_s , I_1 , I_2 , V_1 , and V_2 making use of KVL. Does Ohm's Law agree with KVL? Does the summation of rises equal the summation of drops?

Given the above circuit and unknown resistance values E = 7V, $V_1 = 2.6V$ solve for V_2 using KVL only.

Given the above circuit and $V_1 = 30V$ and $V_2 = 18V$ solve for E using KVL only.

Explain how ground references affect a circuit.

(26:13 to 32:09) Given a series relationship of 4 unknown devices, solve for V₃ using KVL only.

Describe a series aiding relationship.

(38:00 to 48:55) Given this circuit solve for V_1 , V_2 , V_{AE} , and V_{CF} using KVL.

Describe a series opposing relationship.

(48:55 to 56:30) Apply KVL to the battery charging circuit when $E_2 = 11.6V$ and when $E_2 = 12.1V$ and when $E_2 = 14.1V$

Describe why voltage sources with different values are never placed in parallel with one another.

Given the above circuit and E = 24V, $R_2 = 200\Omega$, $R_3 = 600\Omega$, and $V_1 = 4V$, solve for R_T , R_1 , I_s , I_1 , I_2 , V_2 , P_T , P_1 , P_2 , and P_3 making use of KVL.

Given the above circuit and E = 16V, $R_1 = 300\Omega$ and $R_2 = 200\Omega$, solve for R_T , I_s , I_1 , I_2 , V_1 , and V_2 making use of KVL. Comment on troubleshooting scenarios in which observed values are different from expectations.

Describe how a reverse biased diode acts in series circuit.

Describe how a forward biased diode with a voltage drop acts in series circuit.

Determine the resistance necessary to limit current to 24 mA for a diode with a 1.8V drop when supplied by a 5V source.

Describe why inrush occurs for motors at a dead stop (locked rotor conditions).

Describe how the CEMF generated by a spinning armature keeps current draw manageable for a moving motor.