Capacitor Charging with Initial Conditions (26:41)

Capacitor Charging Circuit 1 (0:00 to 7:18)

Given:
$\mathrm{E}=12 \mathrm{~V}$
$\mathrm{R}_{1}=200 \Omega$
$\mathrm{C}=15 \mu \mathrm{~F}$
V_{C} starts the charging process at 2 V
Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive Ic travels in to out top to bottom
positive V_{C} appears positive to negative top to bottom
Determine the time constant for capacitor charging circuit 1. Determine the time necessary for a full charge.

Determine the initial conditions for $\mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$. Assume the capacitor has an initial voltage of +2 V .
Determine the final conditions for $\mathrm{V}_{\mathrm{c}}, \mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$.
Derive the time variant expressions for $i_{c}(t), v_{c}(t), i_{R_{1}}(t)$, and $v_{R_{1}}(t)$, and plot these properties for a full charge.

Determine the time V_{c} has risen to 5 V . At this same time determine the instantaneous values of $\mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$.

Capacitor Charging Circuit 2 (7:18 to 15:22)

Given:
$E=24 V$
$\mathrm{R}_{1}=500 \Omega$
$\mathrm{C}=47 \mu \mathrm{~F}$
V_{C} starts the charging process at -2 V

Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive I_{c} travels in to out top to bottom
positive V_{c} appears positive to negative top to bottom
Determine the time constant for capacitor charging circuit 2. Determine the time necessary for a full charge.

Determine the initial values for $V_{C}, I_{C}, V_{R 1}$, and $I_{R 1}$. Assume the capacitor has an initial voltage of - 6 V .
Determine the final values for $V_{C}, I_{c}, V_{R 1}$, and $I_{R 1}$.
Derive the time variant expressions for $i_{c}(t), v_{c}(t), i_{R 1}(t)$, and $v_{R 1}(t)$, and plot these properties for a full charge.

Determine the instantaneous values of $\mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$ at $\mathrm{t}=20 \mathrm{~ms}$.

Determine the time V_{C} has risen to 0 V . At this same time determine the instantaneous values of $\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$.

Capacitor Charging Circuit 3 (15:22 to END)

Given:
$\mathrm{E}=8 \mathrm{~V}$
$\mathrm{R}_{1}=250 \Omega$
$\mathrm{C}=2 \mu \mathrm{~F}$
V_{C} starts the charging process at +10 V
Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive I_{c} travels in to out top to bottom
positive V_{c} appears positive to negative top to bottom
Determine the time constant for capacitor charging circuit 3 . Determine the time necessary for a full charge.

Determine the initial conditions for $V_{c}, I_{c}, V_{R 1}$, and $I_{R 1}$. Assume the capacitor has an initial voltage of +10 V .

Determine the final conditions for $\mathrm{V}_{\mathrm{c}}, \mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$.
Derive the time variant expressions for $\mathrm{i}_{\mathrm{c}}(\mathrm{t}), \mathrm{v}_{\mathrm{c}}(\mathrm{t})$, $\mathrm{i}_{\mathrm{R} 1}(\mathrm{t})$, and $\mathrm{v}_{\mathrm{R} 1}(\mathrm{t})$, and plot these properties until V_{C} reaches a steady state value.

Determine the instantaneous values of $\mathrm{V}_{\mathrm{C}}, \mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$ at $\mathrm{t}=600 \mu \mathrm{~s}$.
Determine the time V_{c} has risen to OV . At this same time determine the instantaneous values of $\mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and IR_{1}.

Is capacitor charging circuit 3 really a charging circuit?

