## **Capacitor Partial Charging and Discharging (31:31)**

Capacitor Partial Charging and Partial Discharging Circuit 1 (0:00 to 14:05)



Given:

$$\begin{split} \mathsf{E} &= 12\mathsf{V} \\ \mathsf{R}_1 &= 200\Omega \\ \mathsf{C} &= 15\mu\mathsf{F} \\ \mathsf{R}_2 &= 400\Omega \\ \mathsf{V}_c \text{ starts the charging process at 0V} \end{split}$$

Assume the following polarities:

positive  $I_1$  travels in to out left to right positive  $V_1$  appears positive to negative left to right positive  $I_c$  travels in to out top to bottom positive  $V_c$  appears positive to negative top to bottom positive  $I_2$  travels in to out top to bottom positive  $V_2$  appears positive to negative top to bottom

Determine the instantaneous values of  $V_C$ ,  $I_C$ ,  $V_{R1}$ , and  $I_{R1}$  for a 6ms partial charge through SW1.

Draw a plot of electrical properties for a 6ms partial charge through SW1. Identify a quick means of drawing plots for a partial charge event.

Identify the beginning state for a discharge process preceded by a partial charge.

Derive the time variant expressions for  $i_c(t)$ ,  $v_c(t)$ ,  $i_{R2}(t)$ , and  $v_{R2}(t)$ , and plot these properties for discharge through SW2.

Determine the instantaneous values of  $V_C$ ,  $I_C$ ,  $V_{R2}$ , and  $I_{R2}$  for a 4ms partial discharge through SW2.

Draw a plot of electrical properties for a 4ms partial discharge through SW2. Identify a quick means of drawing plots for a partial discharge event.

Draw a plot of electrical properties for a 6ms partial charge through SW1 immediately followed by a 4ms partial discharge through SW2. (ie: back to back partial charge and partial discharge)

Describe the behavior of  $v_c(t)$  for repeated partial charges immediately followed by partial discharges of less than 5 time constants.

Describe what defines a partial charge or partial discharge with respect to a circuit's time constant.

## Capacitor Partial Charging and Partial Discharging Circuit 2 (14:05 to END)



Given:

E = 16V  $R_1 = 200\Omega$   $C = 20\mu F$   $R_2 = 100\Omega$  $V_C \text{ starts the charging process at 2.1V}$ 

Assume the following polarities:

positive  $I_1$  travels in to out left to right positive  $V_1$  appears positive to negative left to right positive  $I_c$  travels in to out top to bottom positive  $V_c$  appears positive to negative top to bottom positive  $I_2$  travels in to out top to bottom positive  $V_2$  appears positive to negative top to bottom

Determine the time constant for the charging process through SW1. Determine the time necessary for a full charge.

Determine the initial conditions for V<sub>C</sub>, I<sub>C</sub>, V<sub>R1</sub>, and I<sub>R1</sub>. Assume the capacitor has an initial voltage of 2.1V.

Derive the time variant expressions for  $i_c(t)$ ,  $v_c(t)$ ,  $i_{R1}(t)$ , and  $v_{R1}(t)$  for the charge process.

Determine the instantaneous final values of  $V_C$ ,  $I_C$ ,  $V_{R1}$ , and  $I_{R1}$  for a 1ms partial charge through SW1.

Determine the time constant for the discharge process through SW2. Determine the time necessary for a full discharge.

Determine the initial conditions for  $V_C$ ,  $I_C$ ,  $V_{R2}$ , and  $I_{R2}$  at the start of the discharge process through SW2.

Derive the time variant expressions for  $i_c(t)$ ,  $v_c(t)$ ,  $i_{R2}(t)$ , and  $v_{R2}(t)$  for the discharge process through SW2.

Determine the instantaneous final values of V<sub>C</sub>, I<sub>C</sub>, V<sub>R2</sub>, and I<sub>R2</sub> for a 1ms partial discharge through SW2.

Draw a plot of electrical properties for a 1ms partial charge through SW1 immediately followed by a 1ms partial discharge through SW2.