Capacitor Partial Charging and Discharging (31:31)

Capacitor Partial Charging and Partial Discharging Circuit 1 (0:00 to 14:05)

Given:
$\mathrm{E}=12 \mathrm{~V}$
$\mathrm{R}_{1}=200 \Omega$
$\mathrm{C}=15 \mu \mathrm{~F}$
$\mathrm{R}_{2}=400 \Omega$
V_{C} starts the charging process at 0 V
Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive I_{c} travels in to out top to bottom
positive V_{C} appears positive to negative top to bottom
positive I_{2} travels in to out top to bottom
positive V_{2} appears positive to negative top to bottom
Determine the instantaneous values of $\mathrm{V}_{\mathrm{c}}, \mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 1}$, and $\mathrm{I}_{\mathrm{R} 1}$ for a 6 ms partial charge through SW 1 .
Draw a plot of electrical properties for a 6 ms partial charge through SW1. Identify a quick means of drawing plots for a partial charge event.

Identify the beginning state for a discharge process preceded by a partial charge.
Derive the time variant expressions for $\mathrm{i}_{\mathrm{c}}(\mathrm{t}), \mathrm{v}_{\mathrm{c}}(\mathrm{t}), \mathrm{i}_{\mathrm{R} 2}(\mathrm{t})$, and $\mathrm{v}_{\mathrm{R} 2}(\mathrm{t})$, and plot these properties for discharge through SW2.

Determine the instantaneous values of $V_{C}, I_{c}, V_{R 2}$, and $I_{\text {R2 }}$ for a $4 m s$ partial discharge through SW 2 .
Draw a plot of electrical properties for a 4 ms partial discharge through SW2. Identify a quick means of drawing plots for a partial discharge event.

Draw a plot of electrical properties for a 6 ms partial charge through SW1 immediately followed by a 4 ms partial discharge through SW2. (ie: back to back partial charge and partial discharge)

Describe the behavior of $v_{c}(t)$ for repeated partial charges immediately followed by partial discharges of less than 5 time constants.

Describe what defines a partial charge or partial discharge with respect to a circuit's time constant.

Capacitor Partial Charging and Partial Discharging Circuit 2 (14:05 to END)

Given:
$\mathrm{E}=16 \mathrm{~V}$
$\mathrm{R}_{1}=200 \Omega$
$\mathrm{C}=20 \mu \mathrm{~F}$
$R_{2}=100 \Omega$
V_{c} starts the charging process at 2.1V
Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive I_{c} travels in to out top to bottom
positive V_{c} appears positive to negative top to bottom
positive I_{2} travels in to out top to bottom
positive V_{2} appears positive to negative top to bottom
Determine the time constant for the charging process through SW1. Determine the time necessary for a full charge.

Determine the initial conditions for $V_{c}, I_{c}, V_{R 1}$, and $I_{R 1}$. Assume the capacitor has an initial voltage of 2.1V.
Derive the time variant expressions for $\mathrm{i}_{\mathrm{c}}(\mathrm{t}), \mathrm{v}_{\mathrm{c}}(\mathrm{t})$, $\mathrm{i}_{\mathrm{R} 1}(\mathrm{t})$, and $\mathrm{v}_{\mathrm{R1}}(\mathrm{t})$ for the charge process.
Determine the instantaneous final values of $V_{c}, I_{c}, V_{R 1}$, and $I_{R 1}$ for a 1 ms partial charge through SW1.
Determine the time constant for the discharge process through SW2. Determine the time necessary for a full discharge.

Determine the initial conditions for $\mathrm{V}_{\mathrm{c}}, \mathrm{I}_{\mathrm{c}}, \mathrm{V}_{\mathrm{R} 2}$, and $\mathrm{I}_{\mathrm{R} 2}$ at the start of the discharge process through SW 2 .
Derive the time variant expressions for $i_{c}(t), v_{c}(t), i_{R 2}(t)$, and $v_{R 2}(t)$ for the discharge process through SW2.
Determine the instantaneous final values of $V_{c}, I_{C}, V_{R 2}$, and $I_{R 2}$ for a 1 ms partial discharge through SW 2 .
Draw a plot of electrical properties for a 1 ms partial charge through SW1 immediately followed by a 1 ms partial discharge through SW2.

