Capacitor Charging Featuring Thevenin's Theorem (32:42)

Capacitor Charging Circuit 1 (0:00 to 23:59)

Given:
$\mathrm{E}=12 \mathrm{~V}$
$\mathrm{R}_{1}=200 \Omega$
$\mathrm{C}=15 \mu \mathrm{~F}$
$\mathrm{R}_{2}=400 \Omega$
V_{C} starts the charging process at 0 V
Assume the following polarities:
positive I_{1} travels in to out left to right
positive V_{1} appears positive to negative left to right
positive I_{c} travels in to out top to bottom
positive V_{c} appears positive to negative top to bottom
positive I_{2} travels in to out top to bottom
positive V_{2} appears positive to negative top to bottom
Determine the Thevenin's equivalent circuit seen by the capacitor when both SW1 and SW2 simultaneously close at $\mathrm{t}=0$.

Determine the time constant for capacitor charging circuit 1 when both SW1 and SW2 simultaneously close at $\mathrm{t}=0$. Determine the time necessary for a full charge.

Determine the instantaneous values for V_{c} and I_{c} at the start of the charge process when both SW1 and SW2 simultaneously close at $\mathrm{t}=0$. Assume the capacitor is initially uncharged.

Given SW1 and SW2 remain closed for 5 time constants determine the final values for V_{c} and I_{c}.
Derive the time variant expressions for current through the capacitor as a function of time, $i_{c}(t)$, and voltage across the capacitor as a function of time, $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$, and plot these properties for a full charge when both SW1 and SW2 simultaneously close at $\mathrm{t}=0$.

Determine the instantaneous values of I_{c} and V_{c} at $\mathrm{t}=1 \mathrm{~ms}$.
Determine the time V_{c} has risen to 5 V . At this same time determine the instantaneous value of I_{c}.
Determine the instantaneous values of $\mathrm{I}_{1}, \mathrm{~V}_{1}, \mathrm{I}_{2}$, and V_{2} at $\mathrm{t}=0$ and 10 ms .
Determine the instantaneous values of $\mathrm{I}_{1}, \mathrm{~V}_{1}, \mathrm{l}_{2}$, and V_{2} at $\mathrm{t}=10 \mathrm{~ms}$.

Derive the time variant expressions for $\mathrm{i}_{1}(\mathrm{t}), \mathrm{v}_{1}(\mathrm{t}), \mathrm{i}_{2}(\mathrm{t})$, and $\mathrm{v}_{2}(\mathrm{t})$ and plot these properties for a full charge.

Determine the instantaneous values of $\mathrm{I}_{1}, \mathrm{~V}_{1}, \mathrm{I}_{2}$, and V_{2} at $\mathrm{t}=1 \mathrm{~ms}$.

Determine the instantaneous values of $\mathrm{I}_{1}, \mathrm{~V}_{1}, \mathrm{I}_{2}$, and V_{2} at $\mathrm{t}=1.963 \mathrm{~ms}$, and occasion in which V_{C} to be 5 V and I_{C} to be 22.5 mA .

Capacitor Charging Circuit 2 (23:59 to END)

Given capacitor charging circuit 2, determine the Thevenin's equivalent circuit seen by the capacitor with an initial voltage of -5 V .

Determine the time constant for the charging process

Determine the initial and final conditions for I_{C} and V_{C}.

Determine the time variant expressions for $\mathrm{vc}(\mathrm{t})$ and $\mathrm{ic}(\mathrm{t})$ draw a plots of these properties for a full charge of 5 time constants.

Determine the instantaneous values of I_{C} and V_{C} at $t=10 \mathrm{~ms}$.

Determine the time V_{c} has risen to 0 V . At this same time determine the instantaneous value of I_{C}.

