Capacitors in Series and Parallel (35:27)

Identify the formulas used to calculate the total capacitance of series arrangement of capacitors. Identify the formula used to calculate the total capacitance of parallel arrangement of capacitors.

Given the above capacitor charging circuit determine the Thevenin's equivalent circuit seen by the $20 \mu \mathrm{~F}$ capacitance.

Determine the time constant for the charging process. Determine the time necessary for a full charge.

Determine the initial conditions for V_{c} and I_{c}.
Determine the final conditions for V_{C} and I_{c} at the end of the charge process.
Derive the time variant expressions for $i_{c}(t)$ and $v_{c}(t)$ and plot these properties for a full charge.
Determine the instantaneous values for I_{c} and V_{c} at $\mathrm{t}=1.5 \mathrm{~ms}$.

Determine the time instantaneous voltage across the capacitor has risen to 12 V . At this same time determine the instantaneous value of $I c$.

Parallel Arrangement of Identical Capacitors:

Determine the behavior of the charging process and electrical properties of the system if the $20 \mu \mathrm{~F}$ total capacitance in the previous circuit is a parallel arrangement of two $10 \mu \mathrm{~F}$ capacitors.

Series Arrangement of Identical Capacitors:

Determine the behavior of the charging process and electrical properties of the system if the $20 \mu \mathrm{~F}$ total capacitance in the previous circuit is a series arrangement of two $40 \mu \mathrm{~F}$ capacitors.

Parallel Arrangement of Unequal Capacitors:

Determine the total capacitance of a parallel arrangement of a $12 \mu \mathrm{~F}$ and $8 \mu \mathrm{~F}$ capacitor.
Determine the total charge transferred to this parallel arrangement of capacitors for a span of 12 s .

Determine the voltage across the above parallel arrangement of capacitors after a span of 12 s
Determine the charge delivered to each capacitor and the total charge after a span of 12 s .

Determine the current (ie: rate of charge transfer) for each capacitance over the 12 s period.
Identify the formula used to calculate current through a capacitor of interest in a parallel arrangement of capacitors. Use this formula and $K C L$ to calculate I_{1} and I_{2} for the above circuit given $I_{I N}=10 \mu \mathrm{~A}$.

Determine the behavior of the charging process and electrical properties of the system if the $20 \mu \mathrm{~F}$ total capacitance is a parallel arrangement of a $8 \mu \mathrm{~F}$ and $12 \mu \mathrm{~F}$ capacitor.

Series Arrangement of Unequal Capacitors:

Determine the total capacitance of a parallel arrangement of a $30 \mu \mathrm{~F}$ and $60 \mu \mathrm{~F}$ capacitor.

Determine the total charge transferred to this parallel arrangement of capacitors for a span of 12 s .

Determine the voltage across the above parallel arrangement of capacitors after a span of 12 s

Determine the charge delivered to each capacitor and the total charge after a span of 12 s .

Determine the voltage across each capacitance after a 12 s period.

Identify the formula used to calculate voltage across a capacitor of interest in a series arrangement of capacitors. Use this formula and KVL to calculate V_{1} and V_{2} for the above circuit given $\mathrm{V}_{\text {TOTAL }}=6 \mathrm{~V}$.

Determine the behavior of the charging process and electrical properties of the system if the $20 \mu \mathrm{~F}$ total capacitance is a series arrangement of a $30 \mu \mathrm{~F}$ and $60 \mu \mathrm{~F}$ capacitor.

Determine V_{1}, I_{1}, V_{2}, and I_{2} for the following configurations of capacitors given $V_{\text {TOTAL }}$ is 20 V and $I_{\text {TOtal }}$ is 45mA.

