Complex Numbers: Scientific Calculators (41:47)

Identify the proper settings for the TI-89.
Describe how to enter a complex number in polar format in the TI-89. Identify the location of the phasor angle symbol.

Describe how to enter a complex number in rectangular format in the TI-89. Identify the location of the \mathbf{j} symbol.

When the TI-89 is setup in polar mode explain what happens when one enters a complex number using rectangular format.

Explain how to use the $\mathrm{TI}-89$ to convert from polar to rectangular format.
Identify the CATALOG entries capable of isolating individual components of a complex number.
Explain how to use the $\mathrm{TI}-89$ to negate a complex number. Discuss complications negating complex numbers in rectangular format.

Identify the CATALOG entry capable of forming the complex conjugate of a complex number.
Given these complex numbers determine the desired qualities using the scientific calculator.

```
(1) Pour: }\overline{A}=11.3\angle$9.\mp@subsup{8}{}{\circ
    Rectuwur: }\overline{A}
(2) Aहcrowauk: \overline{B}=-5.4+J9.1
    pour: \overline{B}=
(3) C=11.5<-125.5
    real=
(4) D=7.9 L-3.6
    iraginary=
(5) }\overline{E}=1,2+57.
    meynitude=
b) \overline{F}=-3.0+j4.4
    angle =
```

(7) $\bar{G}=3.7 \angle-66.2^{\circ}$
$-\bar{G}=$
(3) $\bar{H}=-4.0-j 4.1$ rour: $-\vec{H}=$ ancrawna: $-\bar{H}=$
(a) $\overline{6}=3.7 \angle-66.2^{\circ}$
$\bar{G}^{*}=$
(10) $\bar{H}=-4,0-j 4.1$
pouk:
$\bar{H}^{*}=$
${ }_{H^{*}}^{\text {secosen }}$

$$
\text { (1) poun: } \bar{I}=20.1\left\langle 31^{\circ} 0\right. \text {. }
$$

Given these complex numbers determine the desired qualities using the scientific calculator.
(12) rour: $\bar{A}=4.4 \angle 69.9^{\circ}$
Rectownar: $\bar{A}=$
real *
iraginary $=$
mannitale $=$
angle =
(13) Rectuvaraz: $\bar{B}=-1.6+j 5.3$

Given these arguments perform the desired operations expressing your final answer in the desired format.
(1) $\bar{A}=7.8 \angle 8 \mathrm{C}$
$\bar{B}=7.8 \angle 40 \mathrm{c}$
Sue: $\bar{A} * \bar{B}=$
(4) $\bar{A}=-6.4-j 0.5$
$\bar{B}=1.7-j 8.2$
$\bar{A}-\bar{B}=$
(1) $\bar{A}=-5.7-j 99$
$\overline{\mathrm{B}}=9.8<-8.11^{\circ}$
(c) $\bar{A}=9.7 \angle 71.9^{\circ}$
mu:
${ }^{\text {nouti }} \bar{A}^{2}=$
(1) $\bar{A}=2.4 \angle 62.4^{\circ}$
$\bar{B}=-9.8+\bar{j} 4.7$
$\bar{A}+\bar{B}=$
(b) $\bar{A}=-5,7+57.5$
${ }_{\bar{A}^{3}}^{\text {mans }}=$

Given these arguments perform the desired operations expressing your final answer in the desired format.
(7) $\bar{A}=10.9 \angle 59.4^{\circ}$
$\bar{B}=1.1+\overline{ } 2.1$
Nas $\bar{A}-\bar{B}=$
(1) $\bar{A}=8.1 \angle 82.6^{\circ}$ $\bar{B}=9.8 \angle 170.1^{\circ}$ $\bar{A} * \bar{B}=$
(9) $\bar{A}=3.0 \angle-170.5^{\circ}$ $\bar{B}=5.6-\mathrm{J} 9.8$ man: $\overline{\mathrm{A}} / \overline{\mathrm{B}}=$
(11) $\bar{A}=5.9 \angle 56.9^{\circ}$
$\bar{B}=0,4 \angle 123.7^{\circ}$
$\operatorname{mos} \bar{A}+\bar{B}=$
(1) $\bar{A}=-7.0-58.7$
$\frac{\text { mank: }}{A^{2}}=$
(1) $\bar{A}=9.8 \angle 12.3^{\circ}$
$\bar{B}=7.0+57.2$
$\tau=4.5 \angle 30.5^{\circ}$
nuas:

$$
\frac{\bar{A}}{\bar{B}+\bar{C}}=
$$

Given these arguments perform the desired operations expressing your final answer in the desired format.
(1) $\bar{z}_{1}-200 \angle 8$
$Z_{2}=300 \mathrm{eF}$
(4) $\bar{E}=n 0 \angle 0$
$\bar{z}_{2}=24020$
$z_{2}=178180^{\circ}$
$\bar{v}_{1}=\frac{\bar{z}_{1}}{\left(z_{1}+z_{2}\right)} \cdot E$ $\bar{u}_{1}=$?
(i) $\overline{z_{1}}=120 / 8$
$\bar{Z}_{2}=400<0^{\circ}$
$\overline{\Sigma s}_{3}+550$ ヒ100
$\frac{1}{z_{1}}=\frac{1}{z_{1}} \cdot \frac{1}{z_{1}} \cdot \frac{1}{z_{3}}$
₹ = ?
(3) $\bar{I}_{w}=0.120 \angle 0^{\circ}$ $\bar{I}_{1}=0.085 \angle S 4 \mu^{\circ}$
$\bar{I}_{*}=I_{1}+\bar{I}_{2}$ $\bar{I}_{\imath}=$?
(5) $\bar{E}=24<0$
$\bar{v}_{2}=11.8 \angle 59.7^{\circ}$
$\bar{E}=\bar{U}_{1}+\bar{V}_{2}$

$$
\bar{V}_{1}=?
$$

(4) $\bar{I}_{\Delta}=0,20060^{\circ}$
$z_{n}=15040^{\circ}$
$\Sigma_{T T}=300 \angle 90^{\circ}$
$\bar{I}_{m s}=\frac{\bar{Z}_{m r}}{\bar{Z}_{m+\pi}+\bar{z}_{m n}} I_{\nu}$
$\bar{I}_{\text {wit }}=$?

Explain how the summation of the three complex numbers below result in a complex number without an imaginary component or angle.

```
\mp@subsup{\overline{z}}{1}{}=200
z}=14+515
z}=-j15
```

Explain how the summation of the three complex numbers below result in a complex number without an imaginary component or angle.

```
E,-120%"
E
8,}120<420
```

Given $\mathbf{S}_{\mathbf{1}}$ known to be in the first quadrant with a magnitude of 50 and a real component of 32 and $\mathbf{S}_{\mathbf{2}}$ with a magnitude of 24 and an imaginary component of -24 , account for the fact that the operation $\mathbf{S}_{1}+$ \mathbf{S}_{2} yields only a real component.

Which complex number format do you prefer, rectangular or polar?

