Complex Numbers: Scientific Calculators (41:47)

Identify the proper settings for the TI-89.

Describe how to enter a complex number in polar format in the TI-89. Identify the location of the phasor angle symbol.

Describe how to enter a complex number in rectangular format in the TI-89. Identify the location of the **j** symbol.

When the TI-89 is setup in polar mode explain what happens when one enters a complex number using rectangular format.

Explain how to use the TI-89 to convert from polar to rectangular format.

Identify the CATALOG entries capable of isolating individual components of a complex number.

Explain how to use the TI-89 to negate a complex number. Discuss complications negating complex numbers in rectangular format.

Identify the CATALOG entry capable of forming the complex conjugate of a complex number.

Given these complex numbers determine the desired qualities using the scientific calculator.

D POLAR : X = 11.3∠S9.8* Rectausour: X =	⊕ G= 3.7 <u>∠-</u> 662° - G=	(1) POLAR: Ī= 20.1 <u>/3</u> 1° Rectaugular: Ī=
D RECTANGULAR: B= -5.4+59.1 POLAR: B=	Ø H=-4,0-34.1 MUNK: -H=	real = Imaginary =
3 Z= 11.5 (-125.5°) real =	Пестичныя: H =	Magnitude = angle =
D = 7.9 (23.6° inaginary =		-王= 〒*=
3 E= 1.2+ J 7.9 myn:tude =	(1) H=-4,0 - 54,1 POLAR:	
D F= -3.0 + j 4.4 angle =	H [*] ±= RECTUBULAR: H [*] ±_	

Given these complex numbers determine the desired qualities using the scientific calculator.

(12) POLAR: A = 4.4 (69.9°	(13) RECTANGULAR: B=-1,6+55.3
RECTANGUAR: A =	POLAR: B=
real =	real =
inaginary =	inaginary =
mynitude =	magnitude =
angle =	angle =
A =	<u> </u>
=* #	<u> </u>

Given these arguments perform the desired operations expressing your final answer in the desired format.

D Ā= 7.8 28.4 B= 7.8 228.4 No.42: Ā*B=	(9) Ā= -6.4 -50.5 Ē= 1.7 -58.2 Arcianumes Ā-Ē=
	© Ā= 9.7 <u>/71.9</u> ° ^{Rolae} : Ā ² =
⑦ Ā= 2.4 <u>/62.4</u> ° B= -9.8 + j 4.7 mux: Ā+B=	© Ā= -5,7+57,5 No.AR: Ā ³ =

Given these arguments perform the desired operations expressing your final answer in the desired format.

(7) Ã= 10.9 LISY.4° B= 1.1 + J Z.1	() Ā= 5.9 <u>∠56.9</u> ° Ē= 0,4 <u>∠1</u> 23.7°
Ā- <u>ā</u> =	$\overline{A} + \overline{B} =$
(1) A= 8.1 ∠SZ.6° B= 9.8 ∠130.1°	
A#B= (1) A= 3.0 /-170,5°	B= 7.0+J7.2
B= 5.6−39.8 Nume: ⊼/B=	$\frac{\overline{C}}{\overline{B}+\overline{C}} = \frac{\overline{C}}{\overline{B}+\overline{C}}$

Given these arguments perform the desired operations expressing your final answer in the desired format.

$ \begin{aligned} \widehat{D} & \overline{Z}_{1} = 200 de^{4} \\ \overline{Z}_{2} = 300 de^{4} \\ \overline{Z}_{1} = \overline{Z}_{1} \cdot \overline{Z}_{2} \\ \overline{Z}_{1} = \overline{Z}_{1} \cdot \overline{Z}_{2} \\ \overline{Z}_{1} = 7 \end{aligned} $	(1) 元 = 120 (8) 元 = 400 (15) 元 = 550 E10 ⁰ 元 = 元 + 元 - 元 元 = 7	$ \widehat{E} = 24 \angle 0 $ $ \widehat{V_2} = 11.8 \angle 93.3^* $ $ \widehat{E} = \widehat{V_1} + \widehat{V_2} $ $ \widehat{V_1} = ? $
$ \begin{array}{c} \overbrace{\mathcal{C}} \overleftarrow{E} = m 20 \\ \overbrace{\mathcal{R}} = -740 & a \\ \overbrace{\mathcal{R}} = -740 & a \\ \overbrace{\mathcal{R}} = -740 & a \\ \overbrace{\mathcal{R}} = -7 & $	تَـَى= 0.120 کو تَـا= 0.055 کو تَـا= تَـا+تَدِ تَـد= ؟	(b) $\overline{T}_{x1} = 0.210 \text{ LO}^{\circ}$ $\overline{Z}_{xe} = 150 \text{ LO}^{\circ}$ $\overline{Z}_{max} = 300 \text{ LPO}^{\circ}$ $\overline{T}_{max} = \frac{\overline{Z}_{xer}}{\overline{Z}_{xer} + \overline{Z}_{xer}} T_{xer}$ $\overline{T}_{max} = 7$

Explain how the summation of the three complex numbers below result in a complex number without an imaginary component or angle.

Zi = 200 Zi = 14 +5150 Zi = -5150

Explain how the summation of the three complex numbers below result in a complex number without an imaginary component or angle.

E - 120 (0° E - 120 (- 120° E - 120 (- 120° E - 120 (- 120°

Given S_1 known to be in the first quadrant with a magnitude of 50 and a real component of 32 and S_2 with a magnitude of 24 and an imaginary component of -24, account for the fact that the operation $S_1 + S_2$ yields only a real component.

Which complex number format do you prefer, rectangular or polar?