Inductive Complex Impedance (18:53)

Identify how voltage and current relate for resistive, capacitive, and inductive elements.

Identify features of resistive complex impedance and how to calculate resistive complex impedance.

Identify features of capacitive complex impedance and how to calculate capacitive complex impedance.

Identify features of inductive complex impedance and how to calculate inductive complex impedance.

Identify the units employed to measure complex impedance. Identify the means of distinguishing between resistive, capacitive, and inductive complex impedances.

Calculate the complex impedance of a 120 mH inductor at an excitation frequency of 60 Hz . Express your answer in polar format.

Determine the impedance of the above inductor if excitation frequency were increased to 120 Hz .

Determine the impedance of the above inductor if excitation frequency were decreased to 30 Hz .

State the relationship inductive complex impedance magnitude has with frequency. Draw a plot of inductive complex impedance magnitude as a function of frequency.

Explain why an inductor is modeled as a short circuit in steady state DC conditions.

Given the below information determine the desired properties:

```
\(\begin{array}{lll}\text { (i) } L=47 \mathrm{mH} & \text { (i) } L=69 \mathrm{mH} & \text { (3) } L=820 \mathrm{mH} \\ f=400 \mathrm{~Hz} & F=1 \mathrm{kHz} & F=200 \mathrm{~Hz} \\ \bar{Z}_{L}=? & \bar{Z}_{L}=? & \bar{Z}_{L}=?\end{array}\)
(4) \(L=560\). H
    \(\bar{Z}=150 \Omega \angle 90^{\circ}\)
    \(f=\) ?
```

(5) $f=60 \mathrm{~Hz}$
$\bar{z}_{L}=260 \Omega \angle+90^{\circ}$
$L=$?

Given a 22 uF capacitor and a 360 mH inductor at what frequency does their respective complex impedance magnitudes equal each other?

