Peak and Effective Values (18:43)

Describe the amplitude of a sine wave.
Differentiate between the peak, or maximum, value and the peak to peak value for a sine wave.
Determine the + peak, the - peak, and peak to peak value of the function $100 \sin (\mathrm{x})$.
Evaluate the function $100 \sin (\mathrm{x})$ at $\mathrm{x}=40^{\circ}, 60^{\circ}$, and 150°.
Determine the mathematical average value of the function $100 \sin (x)$.
Calculate the instantaneous current and power delivered when $v(x)=100 \mathrm{~V} \sin (x)$ is applied to a 250Ω load at $\mathrm{x}=0^{\circ}, 40^{\circ}, 60^{\circ}, 90^{\circ}$, and 150°.

Describe the shape of current when sinusoidal voltage is applied to a purely resistive load.
Determine the expression for current as a function of angle $x, i(x)$, when $v(x)=100 \mathrm{~V} \sin (x)$ is applied to a 250Ω load.

Describe the maximum and minimum values of power when $v(x)=100 \mathrm{~V} \sin (x)$ is applied to a 250Ω load.
Describe the shape of power when sinusoidal voltage is applied to a purely resistive load.
Determine the average power dissipated when $\mathrm{v}(\mathrm{x})=100 \mathrm{~V} \sin (\mathrm{x})$ is applied to a 250Ω load.
Determine the effective voltage when $\mathrm{v}(\mathrm{x})=100 \mathrm{~V} \sin (\mathrm{x})$ is applied to a 250Ω load.
Describe the means of quickly calculating effective values given peak values.
Draw a diagram illustrating the peak, peak to peak, and effective or RMS value of a sine wave.

Determine the instantaneous value of the following functions at the given angle, the peak value, the peak to peak value, and the effective or RMS value:
$42.1 \mathrm{~V} \sin \left(151.6^{\circ}\right)$
$30.8 \mathrm{~V} \sin \left(110.7^{\circ}\right)$
$97.2 \mathrm{~V} \sin \left(10.0^{\circ}\right)$
Determine the x value which satisfies the condition $9.2 \mathrm{~V}=10.4 \mathrm{~V} \sin (\mathrm{x})$, determine the peak value, the peak to peak value, and the effective or RMS value.

Determine the instantaneous value at 35°, the peak value, and the peak to peak value for sinusoidal voltage with an effective or RMS value of 120 V .

Describe the relationship between peak and effective or RMS values with respect to their magnitudes.

