Period and Frequency (21:28)

Determine the frequency of a rotor driven at 3600rpm.

Determine the period of 1 full revolution of a rotor driven at 3600rpm.

Illustrate the relationship of frequency and period.

Given the following data, determine the missing properties:

n=1800rpm	f	Т
f=50Hz	n	Т
T=12ms	n	F

Given a generator with a 50Hz frequency and a peak value of 325.3V determine voltage and time at: 90°, 180°, 270°, 360°

Identify the easiest, most recognizable points on the sine wave to calculate the period.

Given a generator with a 50Hz frequency and a 325.3V peak value determine the voltage and angle 2.8ms into a revolution.

Given a generator with a 50Hz frequency and a 325.3V peak value express voltage output as a function of time. Identify a general format for sinusoidal voltage as a function of time.

For the expressions $v(t) = \text{peak*sin} (360^{\circ}t/T)$ and $v(t) = \text{peak*sin} (360^{\circ}f^{*}t)$ explain the unit conversion occurring inside the parenthesis.

Given $v(t) = 325.3V \sin (360^{\circ} \times 50^{\circ}t)$ determine output voltage at t=3.5ms.

Given the following data, determine the instantaneous voltage at the specified times:

f=60Hz	V _{PEAK} = 169.7V	v(2.2ms) =
T=12ms	V _{PEAK} = 59.4V	v(8ms) =
f=150Hz	$V_{RMS} = 24V$	v(1.3ms) =
f=1.2kHz	V _{PEAK TO PEAK} = 70.5V	v(1.5ms) =

Given the following graphical information determine the desired properties for $v_1(t)$

Given the following graphical information determine the desired properties for $v_2(t)$

Comment on the differences between $v_1(t)$ and $v_2(t)$ when displayed on the same plot using the same scale.

Determine the instantaneous values of the above functions $v_1(t)$ and $v_2(t)$ at 16ms. Calculate the instantaneous differential between these two functions at 16ms. Comment on moments when there is no instantaneous differential between these two functions.