Period and Frequency (21:28)

Determine the frequency of a rotor driven at 3600rpm.

Determine the period of 1 full revolution of a rotor driven at 3600 rpm .

Illustrate the relationship of frequency and period.

Given the following data, determine the missing properties:

$\mathrm{n}=1800 \mathrm{rpm}$	f	T
$\mathrm{f}=50 \mathrm{~Hz}$	n	T
$\mathrm{T}=12 \mathrm{~ms}$	n	F

Given a generator with a 50 Hz frequency and a peak value of 325.3 V determine voltage and time at: 90°, $180^{\circ}, 270^{\circ}, 360^{\circ}$

Identify the easiest, most recognizable points on the sine wave to calculate the period.

Given a generator with a 50 Hz frequency and a 325.3 V peak value determine the voltage and angle 2.8 ms into a revolution.

Given a generator with a 50 Hz frequency and a 325.3 V peak value express voltage output as a function of time. Identify a general format for sinusoidal voltage as a function of time.

For the expressions $v(t)=$ peak* $\sin \left(360^{\circ} * t / T\right)$ and $v(t)=$ peak* $\sin \left(360^{\circ} * f * t\right)$ explain the unit conversion occurring inside the parenthesis.

Given $v(t)=325.3 \mathrm{~V} \sin \left(360^{\circ} * 50^{*} \mathrm{t}\right)$ determine output voltage at $\mathrm{t}=3.5 \mathrm{~ms}$.

Given the following data, determine the instantaneous voltage at the specified times:

$\mathrm{f}=60 \mathrm{~Hz}$	$V_{\text {PEAK }}=169.7 \mathrm{~V}$	$\mathrm{v}(2.2 \mathrm{~ms})=$
$\mathrm{T}=12 \mathrm{~ms}$	$V_{\text {PEAK }}=59.4 \mathrm{~V}$	$\mathrm{v}(8 \mathrm{~ms})=$
$\mathrm{f}=150 \mathrm{~Hz}$	$V_{\text {RMS }}=24 \mathrm{~V}$	$\mathrm{v}(1.3 \mathrm{~ms})=$
$\mathrm{f}=1.2 \mathrm{kHz}$	$V_{\text {PEAK }}$ TO PEAK $=70.5 \mathrm{~V}$	$\mathrm{v}(1.5 \mathrm{~ms})=$

Given the following graphical information determine the desired properties for $\mathrm{v}_{1}(\mathrm{t})$

$$
\begin{aligned}
& V_{\text {ma }_{1}}= \\
& V_{\text {筑 }}= \\
& V_{\text {PN }}= \\
& F_{1}= \\
& T_{1}= \\
& V_{1}(t)=
\end{aligned}
$$

Given the following graphical information determine the desired properties for $\mathrm{v}_{2}(\mathrm{t})$

Comment on the differences between $v_{1}(t)$ and $v_{2}(t)$ when displayed on the same plot using the same scale.

Determine the instantaneous values of the above functions $\mathrm{v}_{1}(\mathrm{t})$ and $\mathrm{v}_{2}(\mathrm{t})$ at 16 ms . Calculate the instantaneous differential between these two functions at 16 ms . Comment on moments when there is no instantaneous differential between these two functions.

