Series Complex Impedances (25:43)

Identify the formula used to determine the total impedance of a series arrangement of complex impedances.

Determine the total impedance of a series arrangement of a 200Ω resistor and a 530.5 mH inductor at an excitation frequency of 60 Hz . Identify the primary nature of this circuit.

Determine the complex impedance of the above series circuit at a reduced excitation frequency of 30 Hz . Identify the primary nature of this circuit.

Determine the complex impedance of the above series circuit at an increased excitation frequency of 120 Hz . Identify the primary nature of this circuit.

Identify which element in a series circuit determines the primary nature of the circuit.
Determine the total impedance of a series arrangement of a 160Ω resistor, a 180 mH inductor, and a $27 \mu \mathrm{~F}$ capacitor at an excitation frequency of 50 Hz . Identify the primary nature of this circuit. Identify how the capacitor and inductor interact.

Determine the complex impedance of the above series circuit at an increased excitation frequency of 400 Hz . Identify the primary nature of this circuit.

Determine the impedance of a non-ideal 47 mH inductor including an internal resistance of 14Ω at an excitation frequency of 1.2 kHz .

Determine the total impedance of a series combination of the above non-ideal inductor and a 160Ω resistor and a $27 \mu \mathrm{~F}$ capacitor at an excitation frequency of 1.2 kHz .

Given the following data determine the total impedance of these series circuits:
(1)

(b)

Fowore

Discuss how shorts and opens influence the total impedance of series AC circuits.

Determine the total impedance of a series arrangement of a 910Ω resistor, an 800 mH inductor, and a $27 \mu \mathrm{~F}$ capacitor at an excitation frequency of 60 Hz .

Determine the total impedance of the above relationship when the capacitor is removed from consideration with a short circuit.

Determine the total impedance of the above relationship when there exists an open in the series path.

Given the following data determine the total impedance of these series circuits including shorts and opens:

