AC Power Examples (56:09)

Determine the relative phase shift between \(V = 60V \angle 30^\circ \) and \(I = 200mA \angle 10^\circ \).

1-1) Given \(V = 24V \angle 0^\circ \) and \(I = 380mA \angle -23.4^\circ \) solve for \(S, P, \) and \(Q \).

1-2) Given \(V = 90V \angle 0^\circ \) and \(Z = 150\Omega \angle -50^\circ \) solve for \(S, P, \) and \(Q \).

1-3) Given \(I = 1.6A \angle -34^\circ \) and \(Z = 75\Omega \angle 34^\circ \) solve for \(S, P, \) and \(Q \).

1-4) Given \(V=208V, S=249.6VA, \) and \(PF=0.87 \) lagging solve for \(I, P, I, Q, \) and \(Z \).

1-5) Given \(V = 9.8V \angle 0^\circ \) and \(I = 40mA \angle 90^\circ \) solve for \(S, P, \) and \(Q \).

Describe how apparent, real, and reactive power for purely resistive, purely capacitive, and purely inductive elements are illustrated in the power domain.

2-1) Given \(V = 86V \angle 17^\circ \) and \(I = 80mA \angle 35^\circ \) solve for \(S, P, \) and \(Q \).

2-2) Given \(V = 120V \angle 22^\circ \) and \(I = 800mA \angle 22^\circ \) solve for \(S, P, \) and \(Q \).

2-3) Given \(V = 105V \angle -14^\circ \) and \(Z = 280\Omega \angle 40^\circ \) solve for \(S, P, \) and \(Q \).

Given an unloaded motor that draws 507mA of current at a PF of 0.17 calculate \(S, P, \) and \(Q \).

Given a loaded motor that draws 994mA of current at a PF of 0.84 calculate \(S, P, \) and \(Q \).

Compare and contrast the unloaded and load motor's power consumption.

Describe the significance of low and high power factor values.

Given a transformer powered by 120V with \(V_{SECONDARY} = 24V \angle 0^\circ \) and \(I_{SECONDARY} = 4.8A \angle 0^\circ \) solve for \(S, P, \) and \(Q \) for both the primary and secondary assuming ideal conditions, additionally solve for current in the primary.

Given a transformer with: \(V_{PRIMARY} = 120V \angle 0^\circ \)
\[I_{PRIMARY} = 1A \angle -7^\circ \]
\[V_{SECONDARY} = 24V \angle 0^\circ \]
\[I_{SECONDARY} = 4.8A \angle 0^\circ \]
solve for \(S, P, \) and \(Q \) for both the primary and secondary. Determine the efficiency of this non-ideal transformer.

Determine the efficiency of a motor producing 86W of useable power that consumes 119.3VA at a power factor of .84 lagging.

Determine the useable power output of a 95% efficient device consuming 1kVA with a power factor of .9 lagging.

Determine the input power for a 92% efficient motor producing 400W with a power factor of .87 lagging.