BASIC ELECTRICITY AND ELECTRONICS 3

JIM PYTEL

Open Oregon Educational Resources

Basic Electricity and Electronics 3 by Jim Pytel is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

CONTENTS

Introduction	1
UNIT 1: AC POWER	
AC Power	5
AC Power Examples	6
Power in Series AC Circuits	7
Power in Parallel AC Circuits	8
Power in Series-Parallel AC Circuits	9
Oscilloscope MATH Functions: Measuring Power on an Oscilloscope	11
UNIT 2 POWER FACTOR CORRECTION	
Power Factor and Efficiency in AC Circuits	15
Power Factor Correction	17

Power Factor Correction Examples	18
UNIT 3: TRANSFORMERS	
Transformers	21
Transformer Connection Diagrams	22
Non-Ideal Transformers	23
UNIT 4: AC CIRCUIT ANALYSIS TECHNIQUES	
AC Current Sources	27
AC Source Conversion	28
Delta and Y Conversions with Complex Impedances	29
UNIT 5: AC CIRCUIT ANALYSIS THEOREMS	
AC Superposition Theorem	33
AC Superposition Theorem Examples	34
AC Thevenin's Theorem	35
AC Maximum Power Transfer Theorem	36
AC Thevenin's Theorem and AC Maximum Power Transfer Theorem Examples	37
AC Bridge Network Analysis	39

UNIT 6: 3 PHASE AC CIRCUIT ANALYSIS

Introduction to 3 Phase AC Systems	43
Balanced Y Configurations	44
Unbalanced Y Configurations	45
Phase Sequence and Phase Sequence Detection	46
Delta Configurations	48
3 Phase AC Circuit Analysis Examples	49
Single Wattmeter Method	50
Two Wattmeter Method	51
3 Phase AC Power Measurement Examples	52
UNIT 7: RESONANCE AND FILTERS	
Series Resonance	57
Series Resonant Circuit Examples	58
Logarithms and Decibels	59
RC Filters	60
RC Filter Examples	61
Appendix	63
About the author	64

This course is the 3rd installment in a three part series intended to support the flipped classroom approach for traditional basic electronics classes. Basic Electronics 3 covers apparent, real, and reactive power and power factor, power factor correction, ideal and non-ideal transformers, and transformer connection diagrams, AC circuit analysis techniques and theorems like source conversion, the AC superposition theorem, AC Thevenin's Theorem, and the AC Maximum Power Transfer Theorem, 3 phase AC systems including balanced and unbalanced 4 wire Y configurations, 3 wire Y configurations, and delta configurations, the single wattmeter method and the two wattmeter method. These resources are meant to accompany a hands on lab with the guidance of an instructor.

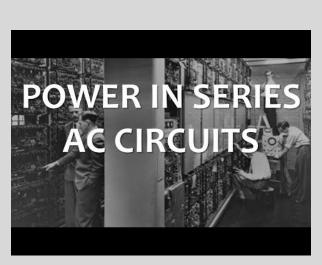
UNIT 1: AC POWER

Objective: Demonstrate understanding of real, reactive, and apparent power. Determine individual and total real, reactive, and apparent power for elements in series, parallel, and series-parallel AC circuits.

AC POWER

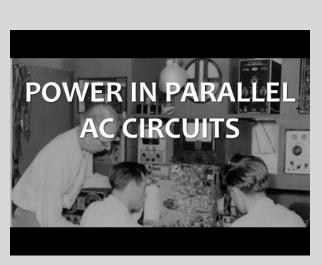
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=56

AC Power Study Guide


AC POWER EXAMPLES

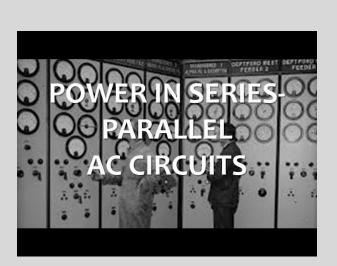
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=64

AC Power Examples Study Guide


POWER IN SERIES AC CIRCUITS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=66

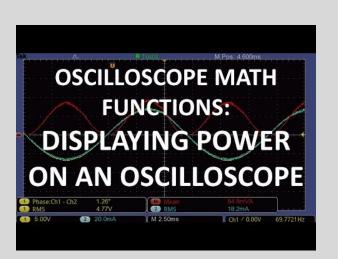
Power in Series AC Circuits Study Guide


POWER IN PARALLEL AC CIRCUITS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=68

Power in Parallel AC Circuits Study Guide

POWER IN SERIES-PARALLEL AC CIRCUITS



A YouTube element has been excluded from this version of the text. You can view it online here:

https://openoregon.pressbooks.pub/ electronics3/?p=70

Power in Series Parallel AC Circuits Study Guide

OSCILLOSCOPE MATH FUNCTIONS: MEASURING POWER ON AN OSCILLOSCOPE

A YouTube element has been excluded from this

version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=72

Oscilloscope MATH Functions Measuring Power with an Oscilloscope Study Guide

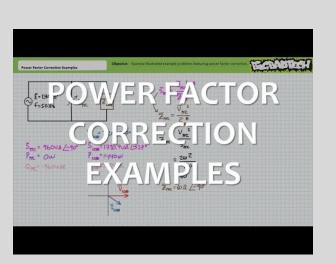
UNIT 2 POWER FACTOR CORRECTION

Objective: Demonstrate understanding of power factor and efficiency. Power factor correct a system. Identify characteristics of non-power factor corrected and power factor corrected systems.

POWER FACTOR AND EFFICIENCY IN AC CIRCUITS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=78

Power Factor and Efficiency in AC Circuits Study Guide


POWER FACTOR CORRECTION

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=87

Power Factor Correction Study Guide

POWER FACTOR CORRECTION EXAMPLES

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=91

Power Factor Correction Examples Study Guide

UNIT 3: TRANSFORMERS

Objectives: Demonstrate understanding of the theory of operation and construction of transformers. Demonstrate understanding of turns ratio, voltage, current, and power transformation in transformers. Demonstrate understanding of transformer connection diagrams, transformer ratings, phase dot notation, parallel connections of transformer windings, series aiding connections of transformer windings, and series opposing connections of transformer windings. Demonstrate understanding of copper losses, iron losses (hysteresis currents), and magnetizing current. eddv and Demonstrate understanding of transformer efficiency and voltage regulation.

TRANSFORMERS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=98

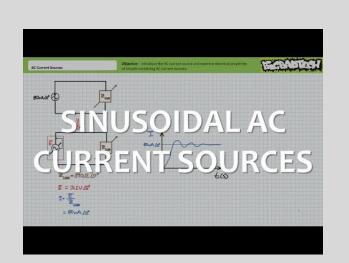
Introduction to Transformers Study Guide

TRANSFORMER CONNECTION DIAGRAMS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=108

Transformer Connection Diagrams Study Guides

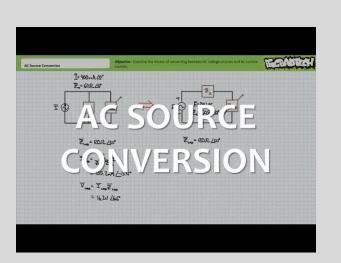
NON-IDEAL TRANSFORMERS


A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=110

Non Ideal Transformers Study Guide

UNIT 4: AC CIRCUIT ANALYSIS TECHNIQUES

Objectives: Demonstrate understanding of current sources, source conversions, and delta/Y conversions using complex impedances.


AC CURRENT SOURCES

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=114

AC Current Sources Study Guide

AC SOURCE CONVERSION

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=119

AC Source Conversion Study Guide

DELTA AND Y CONVERSIONS WITH COMPLEX IMPEDANCES

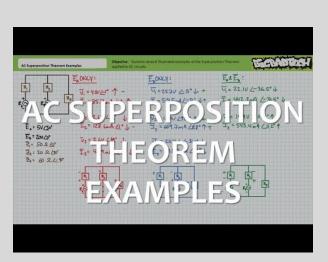
A YouTube element has been excluded from this version of the text. You can view it online here:

https://openoregon.pressbooks.pub/ electronics3/?p=121

Impedance Delta Y Conversion Study Guide

UNIT 5: AC CIRCUIT ANALYSIS THEOREMS

Objectives: Demonstrate understanding of the Superposition Theorem, Thevenin's Theorem, Norton's Theorem, and the Maximum Power Transfer Theorem as applied to AC circuits. Demonstrate understanding of impedance matching transformers. Demonstrate understanding of bridge circuit analysis.


AC SUPERPOSITION THEOREM

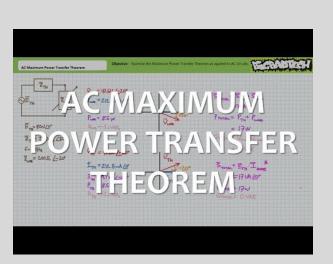
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=127

AC Superposition Theorem Study Guide

AC SUPERPOSITION THEOREM EXAMPLES

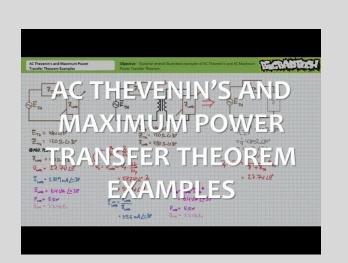
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=135

AC Superposition Theorem Examples Study Guide


AC THEVENIN'S THEOREM

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=137

AC Thevenins Theorem Study Guide


AC MAXIMUM POWER TRANSFER THEOREM

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=140

AC Maximum Power Transfer Theorem Study Guide

AC THEVENIN'S THEOREM AND AC MAXIMUM POWER TRANSFER THEOREM EXAMPLES

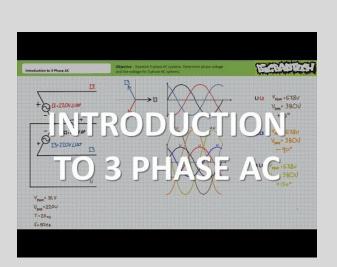


A YouTube element has been excluded from this

version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=142

AC Thevenins Theorem and Maximum Power Transfer Theorem Examples Study Guide

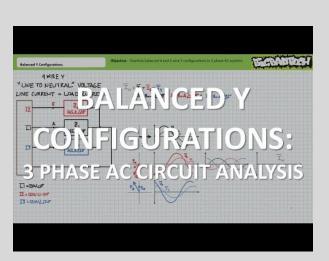
AC BRIDGE NETWORK ANALYSIS


A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=144

AC Bridge Network Analysis Study Guide

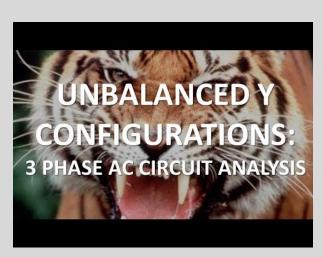
UNIT 6: 3 PHASE AC CIRCUIT ANALYSIS

Objectives: Demonstrate understanding of line to neutral voltage and line to line voltage. Analyze balanced and unbalanced 4 and 3 wire Y and delta configured loads in 3 phase AC systems. Examine the 3 wattmeter, single wattmeter, and two wattmeter method in 3 phase AC systems.


INTRODUCTION TO 3 PHASE AC SYSTEMS

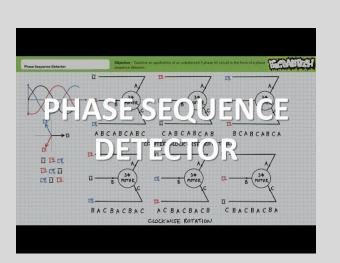
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=149

Introduction to 3 Phase AC Study Guide


BALANCED Y CONFIGURATIONS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=154

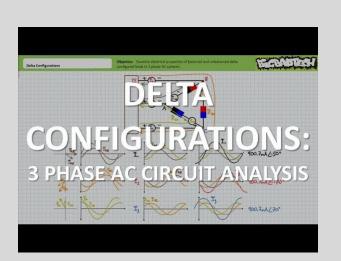
Balanced Y Configurations Study Guide


UNBALANCED Y CONFIGURATIONS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=157

Unbalanced Y Configurations Study Guide

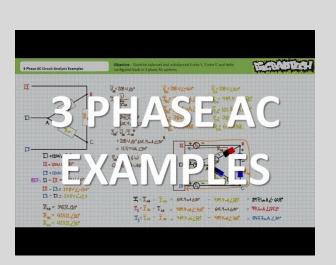
PHASE SEQUENCE AND PHASE SEQUENCE DETECTION



A YouTube element has been excluded from this version of the text. You can view it online here:

https://openoregon.pressbooks.pub/ electronics3/?p=174

Phase Sequence Detector Study Guide


DELTA CONFIGURATIONS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=162

Delta Configurations Study Guide

3 PHASE AC CIRCUIT ANALYSIS EXAMPLES

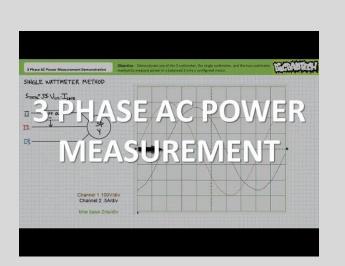
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=166

3 Phase AC Examples Study Guide

SINGLE WATTMETER METHOD

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=168

Single Wattmeter Method Study Guide

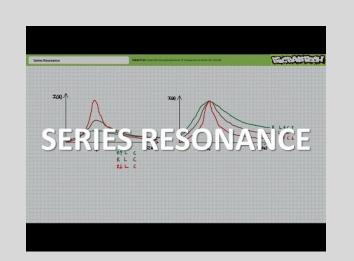

TWO WATTMETER METHOD

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=172

2 Wattmeter Method Study Guide

3 PHASE AC POWER MEASUREMENT EXAMPLES

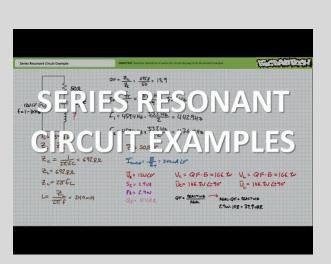
A YouTube element has been excluded from this version of the text. You can view it online here:


https://openoregon.pressbooks.pub/ electronics3/?p=178

3 Phase AC Power Measurement Application Study Guide

UNIT 7: RESONANCE AND FILTERS

Objectives: Determine the resonant frequency of a series AC circuit. Evaluate electrical properties of series AC circuit at resonant and at other than resonant conditions. Determine bandwidth and quality factor of a resonant circuit. Calculate common logarithms. Use semi-log plots. Calculate gain in unit of decibels (dB). Determine the critical frequency for an RC filter. Evaluate electrical properties of RC filters below, at, and above the critical frequency. Differentiate between low and high pass RC filters.


SERIES RESONANCE

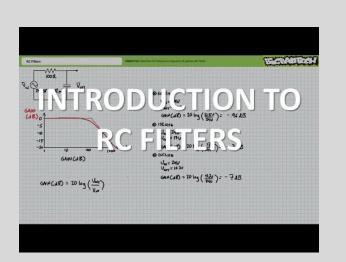
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=184

Series Resonance Study Guide

SERIES RESONANT CIRCUIT EXAMPLES

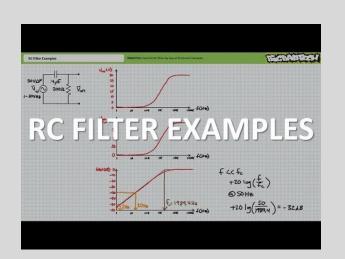
A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=188

Series Resonant Circuit Example Study Guide


LOGARITHMS AND DECIBELS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=192

Logarithms and Decibels Study Guide


RC FILTERS

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=195

RC Filters Study Guide

RC FILTER EXAMPLES

A YouTube element has been excluded from this version of the text. You can view it online here: https://openoregon.pressbooks.pub/ electronics3/?p=198

RC Filter Examples Study Guide

This is where you can add appendices or other back matter.

ABOUT THE AUTHOR

Jim Pytel is currently an instructor at Columbia Gorge Community College's Electro-Mechanical Technology program where he teaches basic electronics, hydraulics and pneumatics, motor control, PLCs, digital logic, and power generation and transmission. He is a former Captain in the US Army and has worked in the semiconductor manufacturing and wind power generation industries. To see more of his online content check out his YouTube channel at: https://www.youtube.com/user/ bigbadtech