"

9.2 Soil-Plant Interactions

Section Goals:

  1. Connect soil chemistry with plant health.
  2. Understand how roots take up nutrients from the soil solution.

Soils support plant growth

Soil plays a key role in plant growth. Beneficial aspects to plants include providing physical support, water, heat, nutrients, and oxygen (Figure 1). Mineral nutrients from the soil can dissolve in water and then become available to plants.  Although many aspects of soil are beneficial to plants, excessively high levels of trace metals (either naturally occurring or anthropogenically added) or applied herbicides can be toxic to some plants.

Figure 1: Soil-Plant Nutrient Cycle. This figure illustrates the uptake of nutrients by plants in the forest-soil ecosystem. Source: U.S. Geological Survey.

The mixture of water and dissolved or suspended materials that occupy the soil pore space is called the soil solution. Since soil water is never pure water, but contains hundreds of dissolved organic and mineral substances, it may be more accurately called the soil solution. Water is central to the dissolution, precipitation and leaching of minerals from the soil profile.

The ratio of solids/water/air in soil is also critically important to plants for proper oxygenation levels and water availability. Too much porosity with air space, such as in sandy or gravelly soils, can lead to less available water to plants, especially during dry seasons when the water table is low. Too much water, in poorly drained regions, can lead to anoxic conditions in the soil, which may be toxic to some plants.

Nutrient Uptake by Plants

Several elements obtained from soil are considered essential for plant growth. Macronutrients, including C, H, O, N, P, K, Ca, Mg, and S, are needed by plants in significant quantities. C, H, and O are mainly obtained from the atmosphere or from rainwater. These three elements are the main components of most organic compounds, such as proteins, lipids, carbohydrates, and nucleic acids. The other six elements (N, P, K, Ca, Mg, and S) are obtained by plant roots from the soil and are variously used for protein synthesis, chlorophyll synthesis, energy transfer, cell division, enzyme reactions, and homeostasis (the process regulating the conditions within an organism).

Micronutrients are essential elements that are needed only in small quantities, but can still be limiting to plant growth since these nutrients are not so abundant in nature. Micronutrients include iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), chlorine (Cl), zinc (Zn), and copper (Cu). There are some other elements that tend to aid plant growth but are not absolutely essential.

Micronutrients and macronutrients are desirable in particular concentrations and can be detrimental to plant growth when concentrations in soil solution are either too low (limiting) or too high (toxicity). Mineral nutrients are useful to plants only if they are in an extractable form in soil solutions, such as a dissolved ion rather than in solid mineral. Many nutrients move through the soil and into the root system as a result of concentration gradients, moving by diffusion from high to low concentrations. However, some nutrients are selectively absorbed by the root membranes, enabling concentrations to become higher inside the plant than in the soil.

Plant uptake of nutrients can only proceed when they are present in a plant-available form. In most situations, nutrients are absorbed in an ionic form from (or together with) soil water. Although minerals are the origin of most nutrients, and the bulk of most nutrient elements in the soil is held in crystalline form within primary and secondary minerals, they weather too slowly to support rapid plant growth. For example, the application of finely ground minerals, feldspar and apatite, to soil seldom provides the necessary amounts of potassium and phosphorus at a rate sufficient for good plant growth, as most of the nutrients remain bound in the crystals of those minerals.

Specific Nutrient-uptake Processes

Plants take up essential elements from the soil through their roots and from the air through their leaves. Nutrient uptake in the soil is achieved by cation exchange, wherein root hairs pump hydrogen ions (H+) into the soil through proton pumps. These hydrogen ions displace cations attached to negatively charged soil particles so that the cations are available for uptake by the root. In the leaves, stomata open to take in carbon dioxide and expel oxygen. The carbon dioxide molecules are used as the carbon source in photosynthesis.

The root, especially the root hair, is the essential organ for the uptake of nutrients. The structure and architecture of the root can alter the rate of nutrient uptake. Nutrient ions are transported to the center of the root, the stele, in order for the nutrients to reach the conducting tissues, xylem and phloem. The Casparian strip, a cell wall outside the stele but in the root, prevents passive flow of water and nutrients, helping to regulate the uptake of nutrients and water. Xylem moves water and mineral ions in the plant and phloem accounts for organic molecule transportation. Water potential plays a key role in a plant’s nutrient uptake. If the water potential is more negative in the plant than the surrounding soils, the nutrients will move from the region of higher solute concentration—in the soil—to the area of lower solute concentration – in the plant.

There are three fundamental ways plants uptake nutrients through the root:

  1. Simple diffusion occurs when a nonpolar molecule, such as O2, CO2, and NH3 follows a concentration gradient, moving passively through the cell lipid bilayer membrane without the use of transport proteins.
  2. Facilitated diffusion is the rapid movement of solutes or ions following a concentration gradient, facilitated by transport proteins.
  3. Active transport is the uptake by cells of ions or molecules against a concentration gradient; this requires an energy source, usually ATP, to power molecular pumps that move the ions or molecules through the membrane.

Nutrients can be moved in plants to where they are most needed. For example, a plant will try to supply more nutrients to its younger leaves than to its older ones. When nutrients are mobile in the plant, symptoms of any deficiency become apparent first on the older leaves. However, not all nutrients are equally mobile. Nitrogen, phosphorus, and potassium are mobile nutrients while the others have varying degrees of mobility. When a less-mobile nutrient is deficient, the younger leaves suffer because the nutrient does not move up to them but stays in the older leaves. This phenomenon is helpful in determining which nutrients a plant may be lacking.

Many plants engage in symbiosis with microorganisms. Two important types of these relationship are:

  1. with bacteria such as rhizobia, that carry out biological nitrogen fixation, in which atmospheric nitrogen (N2) is converted into ammonium (NH4+);
  2. with mycorrhizal fungi, which through their association with the plant roots help to create a larger effective root surface area. Both of these mutualistic relationships enhance nutrient uptake.

The Earth’s atmosphere contains over 78 percent nitrogen. Plants called legumes, including the agricultural crops alfalfa and soybeans, widely grown by farmers, harbor nitrogen-fixing bacteria that can convert atmospheric nitrogen into nitrogen the plant can use. Plants not classified as legumes such as wheat, corn and rice rely on nitrogen compounds present in the soil to support their growth. These can be supplied by mineralization of soil organic matter or added plant residues, nitrogen fixing bacteria, animal waste, through the breaking of triple bonded N2 molecules by lightning strikes or through the application of fertilizers.

Attribution

Essentials of Environmental Science by Kamala Doršner is licensed under CC BY 4.0. Modified from the original by Matthew R. Fisher and Joni Baumgarten.

Plant Nutrition by Wikipedia is licensed CCA-SA 3.0. Modified by Joni Baumgarten. Accessed 03-08-2023.

Soil by Wikipedia is licensed CCA-SA 3.0. Modified by Joni Baumgarten. Accessed 03-08-2023.

 

License

Icon for the Creative Commons Attribution 4.0 International License

Environmental Biology Copyright © 2023 by Joni Baumgarten is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.