"

9.2 Soil-Plant Interactions

Soil plays a key role in plant growth. Beneficial aspects to plants include providing physical support, water, heat, nutrients, and oxygen (Figure 1). Mineral nutrients from the soil can dissolve in water and then become available to plants.  Although many aspects of soil are beneficial to plants, excessively high levels of trace metals (either naturally occurring or anthropogenically added) or applied herbicides can be toxic to some plants.

Figure 1. Soil-Plant Nutrient Cycle. This figure illustrates the uptake of nutrients by plants in the forest-soil ecosystem. Source: U.S. Geological Survey.

The ratio of solids/water/air in soil is also critically important to plants for proper oxygenation levels and water availability. Too much porosity with air space, such as in sandy or gravelly soils, can lead to less available water to plants, especially during dry seasons when the water table is low. Too much water, in poorly drained regions, can lead to anoxic conditions in the soil, which may be toxic to some plants.

Nutrient Uptake by Plants

Several elements obtained from soil are considered essential for plant growth. Macronutrients, including C, H, O, N, P, K, Ca, Mg, and S, are needed by plants in significant quantities. C, H, and O are mainly obtained from the atmosphere or from rainwater. These three elements are the main components of most organic compounds, such as proteins, lipids, carbohydrates, and nucleic acids. The other six elements (N, P, K, Ca, Mg, and S) are obtained by plant roots from the soil and are variously used for protein synthesis, chlorophyll synthesis, energy transfer, cell division, enzyme reactions, and homeostasis (the process regulating the conditions within an organism).

Micronutrients are essential elements that are needed only in small quantities, but can still be limiting to plant growth since these nutrients are not so abundant in nature. Micronutrients include iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), chlorine (Cl), zinc (Zn), and copper (Cu). There are some other elements that tend to aid plant growth but are not absolutely essential.

Micronutrients and macronutrients are desirable in particular concentrations and can be detrimental to plant growth when concentrations in soil solution are either too low (limiting) or too high (toxicity). Mineral nutrients are useful to plants only if they are in an extractable form in soil solutions, such as a dissolved ion rather than in solid mineral.  Many nutrients move through the soil and into the root system as a result of concentration gradients, moving by diffusion from high to low concentrations. However, some nutrients are selectively absorbed by the root membranes, enabling concentrations to become higher inside the plant than in the soil.

Attribution

Essentials of Environmental Science by Kamala Doršner is licensed under CC BY 4.0. Modified from the original by Matthew R. Fisher.

License

Icon for the Creative Commons Attribution 4.0 International License

Environmental Biology Copyright © 2017 by Matthew R. Fisher is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.