33 Mitosis: Eukaryotic Cell Division

Eukaryotes use two major types of cell division: mitosis and meiosis. Mitosis is used to produce new identical somatic (body) cells for growth and healing, while meiosis is used to produce sex cells (eggs and sperm). Meiosis will be discussed in a later chapter.

The cell cycle is an ordered series of events involving cell growth and cell division that produces two new daughter cells via mitosis. The length of the cell cycle is highly variable even within the cells of an individual organism. In humans, the frequency of cell turnover ranges from a few hours in early embryonic development to an average of two to five days for epithelial cells, or to an entire human lifetime spent without dividing in specialized cells such as cortical neurons or cardiac muscle cells. There is also variation in the time that a cell spends in each phase of the cell cycle. When fast-dividing mammalian cells are grown in culture (outside the body under optimal growing conditions), the length of the cycle is approximately 24 hours. The timing of events in the cell cycle is controlled by mechanisms that are both internal and external to the cell.

Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth, DNA replication, and division that produce two genetically identical cells. The cell cycle has two major phases: interphase and the mitotic phase (Figure 1). During interphase, the cell grows and DNA is replicated. During the mitotic phase, the replicated DNA and cytoplasmic contents are separated and the cell divides.

Cell cycle
Figure 1:A cell moves through a series of phases in an orderly manner. During interphase, G1 involves cell growth and protein synthesis, the S phase involves DNA replication and the replication of the centrosome, and G2 involves further growth and protein synthesis. The mitotic phase follows interphase. Mitosis is nuclear division during which duplicated chromosomes are segregated and distributed into daughter nuclei. Usually the cell will divide after mitosis in a process called cytokinesis in which the cytoplasm is divided and two daughter cells are formed.

Interphase

During interphase, the cell undergoes normal cellular processes while also preparing for cell division. For a cell to move from interphase to the mitotic phase, many internal and external conditions must be met. During interphase, the cell is very active biochemically. It is getting ready to divide by accumulating the required molecules and sufficient energy reserves. One very important process that happens during interphase is DNA replication. By the end of interphase, there are two identical copies of the DNA. Each chromosome is replicated and the two identical copies remain attached to each other at the centromere (Figure 2).

Figure 2DNA replication during S phase copies each linear chromosome. The chromosomes remain attached together at a region called the centromere. Photo credit: Lisa Bartee

The centrosome is also duplicated during interphase. Each centrosome is made up of rod-like objects called centrioles. Centrioles help organize cell division. Centrioles are not present in the centrosomes of other eukaryotic species, such as plants and most fungi. Spindle fibers connect the centrosomes to the centromere of each chromosome. The spindle fibers will direct movement of the chromosomes during the rest of the process.

Figure 3(a) Structure of the centrioles making up the centrosome. (b) Centrioles give rise to the mitotic spindle (grey threadlike structures). Photo credit: CNX OpenStax Microbiology.

The Mitotic Phase

mitosis
Figure 4:Mitosis in onion root cells. The cells in this image are in various stages of mitosis. (Credit: Spike Walker. Wellcome Imagesimages@wellcome.ac.uk)

To make two daughter cells, the contents of the nucleus and the cytoplasm must be divided. The mitotic phase is a multistep process during which the copied chromosomes are lined up in the center of the cell, then pulled apart to opposite ends of the cell. The cell is then divided into two new identical daughter cells. The first portion of the mitotic phase, mitosis, is composed of five phases, which accomplish nuclear division (Figure 5). The second portion of the mitotic phase, called cytokinesis, is the physical separation of the cytoplasmic components into two daughter cells. Although the stages of mitosis are similar for most eukaryotes, the process of cytokinesis is quite different for eukaryotes that have cell walls, such as plant cells.

Figure 5 Summary of the process of mitosis. Photo credit Oganesson007, Wikimedia.

To summarize the process of mitosis:

  1. Somatic (body) cell receives a signal that it is time to divide. This might be to heal a wound or to allow the organism to grow larger.
  2. DNA replication takes place during interphase. The end result is two identical copies of each chromosome connected at the centromere. These identical copies are called sister chromatids.
  3. During mitosis (division of the nucleus), the replicated chromosomes condense (wind up tightly), then spindle fibers attach to the centromere of each chromosome. The spindle fibers pull on the chromosomes, which causes them to line up in the center of the cell.
  4. The centromeres separate and the spindle fibers shorten, pulling one sister chromatid to either end of the cell.
  5. During cytokinesis, the cytoplasm of the cell is divided into two new cells by the formation of a new cell membrane between the daughter cells.
  6. The result of mitosis is two identical somatic cells.

Phases of Mitosis

The mitotic phase is divided into a number of different phases. YOU DO NOT NEED TO MEMORIZE WHAT HAPPENS DURING EACH PHASE OF MITOSIS. If you would like to read about what occurs, you can find this information below.

Prophase

The nuclear envelope starts to break down, and the organelles (such as the Golgi apparatus and endoplasmic reticulum), fragment and move toward the edges of the cell. The nucleolus disappears. The centrosomes begin to move to opposite poles of the cell. Microtubules that will form the mitotic spindle extend between the centrosomes, pushing them farther apart as the microtubule fibers lengthen. The sister chromatids begin to coil more tightly with the aid of condensin proteins and become visible under a light microscope.

Figure 6 Prophase. Photo credit Kelvin13; Wikimedia.

Prometaphase

During prometaphase,the “first change phase,” many processes that were begun in prophase continue to advance. The remnants of the nuclear envelope fragment. The mitotic spindle continues to develop as more microtubules assemble and stretch across the length of the former nuclear area. Chromosomes become more condensed and discrete. Each sister chromatid develops a protein structure called a kinetochorein the centromeric region.

Figure 7 Prometaphase. Photo credit Kelvin13; Wikimedia.

The proteins of the kinetochore attract and bind mitotic spindle microtubules. As the spindle microtubules extend from the centrosomes, some of these microtubules come into contact with and firmly bind to the kinetochores. Once a mitotic fiber attaches to a chromosome, the chromosome will be oriented until the kinetochores of sister chromatids face the opposite poles. Eventually, all the sister chromatids will be attached via their kinetochores to microtubules from opposing poles. Spindle microtubules that do not engage the chromosomes are called polar microtubules. These microtubules overlap each other midway between the two poles and contribute to cell elongation. Astral microtubules are located near the poles, aid in spindle orientation, and are required for the regulation of mitosis.

This illustration shows two sister chromatids. Each has a kinetochore at the centromere, and mitotic spindle microtubules radiate from the kinetochore.
Figure 8 During prometaphase, mitotic spindle microtubules from opposite poles attach to each sister chromatid at the kinetochore. In anaphase, the connection between the sister chromatids breaks down, and the microtubules pull the chromosomes toward opposite poles.

Metaphase

During metaphase,the “change phase,” all the chromosomes are aligned in a plane called the metaphase plate, or the equatorial plane, midway between the two poles of the cell. The sister chromatids are still tightly attached to each other by cohesin proteins. At this time, the chromosomes are maximally condensed.

Figure 9 Metaphase. Photo credit Kelvin13; Wikimedia.

Anaphase

During anaphase, the “upward phase,” the cohesin proteins degrade, and the sister chromatids separate at the centromere. Each chromatid, now called a chromosome, is pulled rapidly toward the centrosome to which its microtubule is attached. The cell becomes visibly elongated (oval shaped) as the polar microtubules slide against each other at the metaphase plate where they overlap.

Figure 10 Anaphase. Photo credit Kelvin13; Wikimedia.

Telophase

During telophase, the “distance phase,” the chromosomes reach the opposite poles and begin to decondense (unravel), relaxing into a chromatin configuration. The mitotic spindles are depolymerized into tubulin monomers that will be used to assemble cytoskeletal components for each daughter cell. Nuclear envelopes form around the chromosomes, and nucleosomes appear within the nuclear area.

Figure 11 Telophase. Photo credit Kelvin13; Wikimedia.

Cytokinesis

Cytokinesis,or “cell motion,” is the second main stage of the mitotic phase during which cell division is completed via the physical separation of the cytoplasmic components into two daughter cells. Division is not complete until the cell components have been divided and completely separated into the two daughter cells. Although the stages of mitosis are similar for most eukaryotes, the process of cytokinesis is quite different for eukaryotes that have cell walls, such as plant cells.

In cells such as animal cells that lack cell walls, cytokinesis follows the onset of anaphase. A contractile ring composed of actin filaments forms just inside the plasma membrane at the former metaphase plate (Figure 12). The actin filaments pull the equator of the cell inward, forming a fissure. This fissure, or “crack,” is called the cleavage furrow. The furrow deepens as the actin ring contracts, and eventually the membrane is cleaved in two.

In plant cells, a new cell wall must form between the daughter cells. During interphase, the Golgi apparatus accumulates enzymes, structural proteins, and glucose molecules prior to breaking into vesicles and dispersing throughout the dividing cell (Figure 12). During telophase, these Golgi vesicles are transported on microtubules to form a phragmoplast (a vesicular structure) at the metaphase plate. There, the vesicles fuse and coalesce from the center toward the cell walls; this structure is called a cell plate. As more vesicles fuse, the cell plate enlarges until it merges with the cell walls at the periphery of the cell. Enzymes use the glucose that has accumulated between the membrane layers to build a new cell wall. The Golgi membranes become parts of the plasma membrane on either side of the new cell wall.

Figure 12 During cytokinesis in animal cells, a ring of actin filaments forms at the metaphase plate. The ring contracts, forming a cleavage furrow, which divides the cell in two. In plant cells, Golgi vesicles coalesce at the former metaphase plate, forming a phragmoplast. A cell plate formed by the fusion of the vesicles of the phragmoplast grows from the center toward the cell walls, and the membranes of the vesicles fuse to form a plasma membrane that divides the cell in two.

Summary of Mitosis and Cytokinesis

Figure 13 Mitosis is divided into five stages—prophase, prometaphase, metaphase, anaphase, and telophase. The pictures at the bottom were taken by fluorescence microscopy of cells artificially stained by fluorescent dyes: blue fluorescence indicates DNA (chromosomes) and green fluorescence indicates microtubules (spindle apparatus). (credit “mitosis drawings”: modification of work by Mariana Ruiz Villareal; credit “micrographs”: modification of work by Roy van Heesbeen; credit “cytokinesis micrograph”: Wadsworth Center/New York State Department of Health; scale-bar data from Matt Russell)

G0 Phase

Not all cells adhere to the classic cell-cycle pattern in which a newly formed daughter cell immediately enters interphase, closely followed by the mitotic phase. Cells in the G0 phase are not actively preparing to divide. The cell is in a quiescent (inactive) stage, having exited the cell cycle. Some cells enter G0 temporarily until an external signal triggers the onset of G1. Other cells that never or rarely divide, such as mature cardiac muscle and nerve cells, remain in G0 permanently).

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

OpenStax, Biology. OpenStax CNX. May 27, 2016 http://cnx.org/contents/s8Hh0oOc@9.10:Vbi92lHB@9/The-Cell-Cycle

License

Icon for the Creative Commons Attribution 4.0 International License

MHCC Biology 112: Biology for Health Professions Copyright © 2019 by Lisa Bartee is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book