46 Review of Protein Synthesis

In order to understand the potential effect of mutations, we must first recall how the information in DNA is used to produce a protein. Each protein is coded for by a gene, which is typically hundreds or thousands of base pairs in length. The information in the gene specifies the order in which the amino acids will be assembled into the protein. The order of the amino acids determines the protein’s shape, which determines its function.

Figure 1 Genes, which are carried on (a) chromosomes, are linearly organized instructions for making the RNA and protein molecules that are necessary for all of processes of life. The (b) interleukin-2 protein and (c) alpha-2u-globulin protein are just two examples of the array of different molecular structures that are encoded by genes. (credit “chromosome: National Human Genome Research Institute; credit “interleukin-2”: Ramin Herati/Created from PDB 1M47 and rendered with Pymol; credit “alpha-2u-globulin”: Darren Logan/rendered with AISMIG)

The journey from gene to protein is complex and tightly controlled within each cell. It consists of two major steps: transcription and translation.Together, transcription and translation are known as gene expression.

Transcription

During the process of transcription, the information stored in a gene’s DNA is used as a blueprint to produce a similar molecule called RNA (ribonucleic acid) in the cell nucleus. Both RNA and DNA are made up of a chain of nucleotide bases, but they have slightly different chemical properties (Figure 2).

  • Both RNA and DNA contain a 5-carbon sugar, but the sugar differs: it is deoxyribose in DNA and ribose in RNA (DNA stands for deoxyribonucleic acid; RNA stands for ribonucleic acid).
  • DNA and RNA also differ in the nitrogenous bases they contain. DNA contains A, T, C, and G. RNA contains A, C, and G, but no thymine. Instead it contains a base called uracil (U).
  • DNA is almost always double-stranded (a double helix), while RNA is typically single stranded.
Figure 2 DNA vs RNA. Photo credit Zappys Technology Solution; Flickr.

The type of RNA that contains the information for making a protein is called messenger RNA (mRNA) because it carries the information, or message, from the DNA out of the nucleus into the cytoplasm. During transcription, this mRNA copy is made from a DNA molecule.  This is possible because of the base-pairing rules: A with T (or U) and C with G. The hydrogen bonds connecting the base pairs in a DNA molecule are broken, and an enzyme creates a chain of RNA nucleotides that correspond to the DNA sequence.

In eukaryotes, transcription occurs in the nucleus (because that’s where the DNA is). In prokaryotes, transcription occurs in the cytoplasm because there is no nucleus.

RNA Processing

After prokaryotes produce an mRNA, it can be immediately translated since both processes occur in the cytoplasm. In fact, transcription and translation can occur at the same time – as an mRNA is being transcribed, it can also begin to be translated.

Eukaryotes require a more complex process since the mRNA must move from the nucleus to the cytoplasm. Additionally, eukaryotic mRNAs are typically modified in several different ways: portions of the mRNA that do not code for amino acids are removed (“spliced” out), and the 5′ and 3′ ends are modified to help with recognition and mRNA stability. After these modifications are made, the mature mRNA is transported to the cytoplasm.

Translation

Translation, the second step in getting from a gene to a protein, takes place in the cytoplasm. The mRNA interacts with a specialized complex called a ribosome, which “reads” the sequence of mRNA bases. In conjunction with a type of RNA called transfer RNA (tRNA), the protein is assembled according to the instructions in the mRNA molecule. Each sequence of three bases in the mRNA, called a codon, usually codes for one particular amino acid. Remember that amino acids are the building blocks of proteins. Protein assembly continues until the ribosome encounters a “stop” codon (a sequence of three bases that does not code for an amino acid).

Recall that ribosomes are located in two different places in eukaryotic cells: free-floating in the cytoplasm and attached to the rough endoplasmic reticulum. The final destination of the protein determines where it will be synthesized.

central dogma visual
Figure 3:The Central Dogma – DNA is used to make RNA is used to make protein

The flow of information from DNA to RNA to proteins is one of the fundamental principles of molecular biology. It is so important that it is sometimes called the “central dogma” (Figures 3 and 4).

Figure 4: More detail on the central dogma. (“Overview of Protein Synthesis” by Becky Booneis licensed under CC BY-SA 2.0)

References

Unless otherwise noted, images on this page are licensed under CC-BY 4.0 by OpenStax.

“What are proteins and what do they do?”by U.S. National Library of Medicineis in the Public Domain

License

Icon for the Creative Commons Attribution 4.0 International License

MHCC Biology 112: Biology for Health Professions Copyright © 2019 by Lisa Bartee is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book