**Outcome 1**

1) Explain the difference between distance and displacement.

2) Explain how velocity relates to position.

3) Explain how acceleration relates to velocity.

**Outcome 2**

4) Calculate the on a swimmer moving through water at 0.75 **m/s***. * The drag coefficient for a human in the position is roughly 0.25. Look up for the of water in standard units and cite your source. Estimate the of a human for this situation by using the width and depth of your own body or average human body measurements (cite your source).

5) The swimmer above is moving at a . What is the size and direction of the average force applied to the swimmer by the water due to their swimming motion?

**Outcomes 3, 4**

6) A toddler runs away from a parent at 0.3 **m/s** for 3 **s**, stops for 2 **s** to see if they are being chased.

a) Draw a vs. time graph for the toddler’s motion

b) Draw an vs. time graph for the toddler’s motion

c) Draw a vs. time graph for the toddler’s motion (you will need to calculate the that occur during each interval in order to draw this graph).

7) Upon realizing they might be chased after the 2 **s** stop, the toddler from the previous exercise begins slowly walking away and increasing speed into a run, reaching a speed of 0.4 **m/s** only 3 **s** later.

a) Complete the vs. time graph for the toddler’s motion, now including this new motion. You may draw a new graph or add to your previous graph in a different color. (You will need to calculate the acceleration during this last part of the toddler’s motion in order to complete this graph).

b) Complete the vs. time graph for the toddler’s motion. You may draw a new graph or add to your previous graph in a different color. (You will need to use the acceleration you found above to calculate a change in velocity to complete this graph).

c) Complete the vs. time graph for the toddler’s motion. You may draw a new graph or add to your previous graph in a different color. (You will need to use the acceleration you found above to calculate to complete this graph).

8) Describe the motion depicted by the following velocity vs. time graph. The vertical axis tick marks indicate 1 **m/s** intervals, starting from zero **m/s** at the horizontal axis.

9) Draw the vs. time graph associated with the vs time graph above.

10) Draw the vs. time graph associated with the previous velocity and acceleration vs. time graphs.

**Outcome 4**

11) A person with of 65 **kg **is out walking two dogs and stops to talk with a friend. Suddenly the dogs pull in opposite directions. Dog 1 pulls with a force of 500 **N** to the right. Dog 2 pulls with 300 **N** to the left.

a) Draw a of the dog walker.

b) What is the on the dog walker?

c) What is the of the dog walker, including direction.

d) What distance will the dog walker have moved in 3 **s**?

e) What will the of the dog walker be after 3 **s**?

- Velocity Graph Uploaded by Riaan at English Wikibooks and transferred from en.wikibooks to Commons., GFDL, is licensed under CC BY-NC-SA 4.0 ↵

a force applied by a fluid to any object moving with respect to the fluid, which acts opposite to the relative motion of the object relative to the fluid

lying horizontally with the face and torso facing down

relation between the amount of a material and the space it takes up, calculated as mass divided by volume.

The cross-sectional area is the area of a two-dimensional shape that is obtained when a three-dimensional object - such as a cylinder - is sliced perpendicular to some specified axis at a point. For example, the cross-section of a cylinder - when sliced parallel to its base - is a circle

not changing, having the same value within a specified interval of time, space, or other physical variable

distance traveled per unit time

a quantity of speed with a defined direction, the change in speed per unit time, the slope of the position vs. time graph

the change in velocity per unit time, the slope of a velocity vs. time graph

location in space defined relative to a chosen origin, or location where the value of position is zero

change in position, typically in reference to a change away from an equilibrium position or a change occurring over a specified time interval

a measurement of the amount of matter in an object made by determining its resistance to changes in motion (inertial mass) or the force of gravity applied to it by another known mass from a known distance (gravitational mass). The gravitational mass and an inertial mass appear equal.

a graphical illustration used to visualize the forces applied to an object

the total amount of remaining unbalanced force on an object